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Abstract
We develop an efficient algorithm to find a matrix product state representation of
the ground-state wavefunctions for translationally invariant finite-size periodic
lattice systems in one spatial dimension. This is based on the observation that
the efficient computation of the ground-state energy per site only needs to retain
a certain number of the largest eigenvalues of the transfer matrix for a matrix
product state, without any sacrifice of accuracy. The computational cost is
independent of the system’s size, and scales as χ3 with χ being the truncation
dimension. The algorithm is tested for the critical quantum Ising model in a
transverse field on a finite-size lattice, with the size as large as 4800 for the
truncation dimension 200.

PACS numbers: 07.05.TP, 05.30.−d, 03.65.Ud, 75.40.−s, 11.25.Hf

(Some figures in this article are in colour only in the electronic version)

Significant advances in classical simulations of quantum many-body lattice systems have been
made in the recent decades. Indeed, many powerful numerical methods, such as quantum
Monte Carlo (QMC) [1] and the density matrix renormalization group (DMRG) [2], have been
developed. Although these methods are able to simulate quantum many-body lattice systems,
they do suffer from their respective problems: there is a notorious sign problem with the QMC,
whereas the DMRG is mainly limited to quantum lattice systems in one spatial dimension.
Therefore, it is highly desirable to develop efficient algorithms to classically simulate quantum
many-body systems beyond these limitations. A promising prospect to meet this challenge
comes from the tensor network algorithms [3–8], including the matrix product states (MPS)
[9] for quantum lattice systems in one spatial dimension, and the projected entangled-pair
states (PEPS) [5] for quantum lattice systems in two and higher spatial dimensions.

Specifically, Verstraete, Porras and Cirac [4] devised a variational algorithm to find an
MPS representation of low-lying states for finite-size periodic quantum lattice systems in
one spatial dimension. The computational cost of the algorithm is roughly proportional to
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the lattice size, and also scales as the fifth power with the truncation dimension [4]. This
drawback, as shown by Pippan et al [8], may be remedied in the improved MPS algorithm.
The computational cost of the improved MPS algorithm may be reduced to that comparable
to the DMRG. But it is still proportional to the lattice size, namely, simulating a large size
quantum system is memory demanding and time consuming. On the other hand, an infinite
MPS (iMPS) algorithm has been initiated by Vidal [6], to simulate translationally invariant
quantum systems on an infinite-size lattice in one spatial dimension. Thus an interesting
question arises as to whether or not it is possible to develop an efficient MPS algorithm for
translationally invariant finite-size periodic lattice systems in one spatial dimension, with the
computational cost independent of the lattice size.

In this communication, we address this question. It is shown that one may adapt the
iMPS algorithm to simulate translationally invariant finite-size periodic lattice systems in one
spatial dimension, with the computational cost independent of the lattice size. Moreover,
the scaling of the cost with the truncation dimension is comparable to the improved MPS
algorithm. This is based on the observation that, not all the eigenvalues and eigenvectors of
the transfer matrix for an MPS state contribute significantly to the ground-state energy. This
enables us to dramatically reduce the computational cost, since only a few largest eigenvalues
of the transfer matrix, with the corresponding left and right eigenvectors, need to be retained
when the ground-state energy per site is computed.

The algorithm is tested by computing the MPS representation of the ground-state
wavefunctions for the quantum Ising model in a transverse field on a finite-size lattice with
periodic boundary conditions (PBCs). Since the cost does not depend on the system’s size,
we are able to compute the ground states for both small and large sizes. For a system with
the size ranging from 10 to 100, its ground-state energy per site eN is computed at criticality.
It turns out that it is consistent with the conformal field theory prediction, with the deviation
of the predicted central charge from the exact value around 10−4. We also compute the von
Neumann entropy, a bipartite entanglement measure, for a system with sizes up to 4800. The
discrepancies between the fitted central charges and the exact value are all less than 1.3×10−3.

The description of the algorithm

Consider a translationally invariant quantum system on a finite-size periodic lattice in one
spatial dimension. Suppose each site is endowed with a local Hilbert space of d dimension,
that isH[i] ∼= Cd , so that the Hilbert space of the system isH = ⊗N

i=1H[i]. We restrict ourselves
to study quantum lattice models consisting of the nearest-neighbor interactions, characterized
by a Hamiltonian H = ∑N

i=1 h[i,i+1]. As is well known, the ground-state wavefunction
is generated via an imaginary time evolution, with a randomly chosen state as an initial
state |ψ0〉:

|ψτ 〉 = exp(−Hτ)|ψ0〉
‖exp(−Hτ)|ψ0〉‖ , (1)

when τ → ∞, as long as the initial state is not orthogonal to the genuine ground state.
Let us now introduce an MPS representation of a quantum state wavefunction

translationally invariant under two-site shifts |ψ〉. It may be represented in terms of an
MPS in the form: |ψ〉 = ∑

s1,...,sN
tr
[
�

s1
A λA�

s2
B λB · · ·�sN−1

A λA�
sN

B λB

]|s1, . . . , sN 〉, where si is
the physical index, si = 1, . . . , d, and �

si

A and �
si

B are χ × χ matrices for a given si , with χ

being the truncation dimension and λA, λB are singular value matrices. Here, we have assumed
that N is even. Note that the entries of �

si

A and �
si

B are labeled by the inner indices α and β,
which take values from 1 to χ . In other words, the matrices �

si

A and �
si

B may be regarded
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Figure 1. (i) Two three-index tensors �s
Aαβ and �s

Bαβ , together with singular value matrices λA and
λB , used to make up the MPS representation of the ground-state wavefunctions for a translationally
invariant periodic finite-size system, with s being the physical index, and α, β, γ denoting the inner
indices. (ii) The pictorial representation of an MPS |ψ〉. (iii) The norm 〈ψ |ψ〉, which is the trace
of the power N/2 of the transfer matrix E, with N being the system’s size. Here, we have assumed
that N is even. (iv) The χ2 × χ2 transfer matrix E.

as three-index tensors: �
si

Aαβ and �
si

Bαβ , as visualized in figure 1(i). For a quantum state
|ψ〉 translationally invariant under two-site shifts, they are the building blocks to make up
an MPS representation, a visualization of which is presented in figure 1(ii). One of the
advantages for an MPS representation of a quantum state is that it is straightforward to compute
physical quantities. For example, if one intends to compute the norm for the quantum state
|ψ〉, all needed to be done is to contract the corresponding physical indices si for their MPS
representations, as seen in figure 1(iii). Here, the basic building block is the so-called χ2 ×χ2

transfer matrix E, which is indicated in figure 1(iv). In passing, we point out that an MPS with
the truncation dimension χ satisfies the area law, i.e., the entanglement across each bond is
bounded by log χ . It is efficient to approximate ground states for a gapped local Hamiltonian.

The imaginary time evolution operator exp(−Hτ) in equation (1) is realized via many
small steps, each of which is represented by exp(−Hδτ), with τ = Mδτ . As observed by
Vidal [6], exp(−Hδτ) is split into two kinds of gates UAB and UBA:

UAB ≡
⊗

m

U 2m,2m+1, UBA ≡
⊗

m

U 2m−1,2m, (2)

with the two-site gate defined by

Ui,i+1 ≡ exp(−h[i,i+1]δτ), δτ 
 1. (3)

We stress that this is a consequence of the Suzuki–Trotter decomposition [10]. A peculiar
feature of such a decomposition is that all the two-site gates in UAB and UBA are commutative
with each other.

Now the problem to implement the imaginary time evolution is reduced to how to update
the MPS tensors �s

A, λA, �s
B and λB under the action of a two-site gate U [i,i+1]. This can be

done by adapting the strategy used in the iMPS algorithm [6]. Here, we need to complete two
tasks: first, absorb the action of a two-site gate U [i,i+1] on an MPS, thus resulting in updated
MPS tensors; second, develop an efficient way to compute the ground-state energy per site.

(i) Updating of the MPS representation. Due to the fact that all the two-site gates in UAB and
UBA are commutative, an evolution exp(−Hδτ) over a small time step can be achieved
by successively applying the two-site gates exp(−h[i,i+1]δτ) on the tensors �s

Aαβ, �s
Bαβ

and a singular value matrix λA, respectively. The translational invariance under two-site
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Figure 2. The procedure to update the MPS tensors �A and �B and the singular value matrix λA

via absorbing the action of a two-site gate Ui,i+1. (i) The gate Ui,i+1 = exp(−hi,i+1δτ) is applied
onto the MPS. (ii) A single tensor � is formed by contracting the tensors �A, λA, �B and λB and
the gate Ui,i+1. (iii) Reshape the tensor � into a matrix M. (iv) A singular value decomposition
(SVD) is performed for the matrix M, followed by a truncation, with only the χ largest singular
values retained in the updated singular matrix λ′

A. (v) Reshape the matrices U and V into the
tensors Ũ and Ṽ . (vi) Recover the singular matrix λB , and update the tensors �A and λA.

shifts makes it possible to focus on two consecutive sites i and i + 1; once this is done, we
simultaneously update all the tensors on the entire lattice. As one may see from figure 2,
the updating procedure is formally identical to the infinite-size case, in which the tensors
are updated by applying the two-site gate UAB.1 This consists of a few steps: first, the
two-site gate Ui,i+1 = exp(−hi,i+1δτ) is applied onto the MPS; second, a single tensor
� is formed by contracting the tensors �A, λA, �B , and λB and the gate Ui,i+1; third,
reshape the tensor � into a matrix M; fourth, a singular value decomposition (SVD) is
performed for the matrix M, followed by a truncation, with only the χ largest singular
values retained; fifth, reshape the matrices U and V into the tensors Ũ and Ṽ ; finally,
recover the singular value matrix λB , and update the tensors �A and �B .

(ii) Computation of the ground-state energy per site. Let us turn to the computation of the
ground-state energy per site eN . For a finite-size quantum lattice system with PBCs, the
ground-state energy per site eN takes the form

eN = 1

N

N∑

i=1

〈ψg|h[i,i+1]|ψg〉
〈ψg|ψg〉 . (4)

Here, |ψg〉 is the ground-state wave-function. By taking advantage of the MPS
representation, one finds that the expectation value 〈ψg|h[i,i+1]|ψg〉 can only take two
values, eAB and eBA, respectively, depending on the oddness and evenness of the index
i (see figure 3). Therefore, we have eN = (eAB + eBA)/2. Since the computation
of eAB and eBA is similar, with the only difference in the exchange: �A ↔ �B

and λA ↔ λB , it is enough to focus on the computation of eAB . Denote E as
the transfer matrix, E = ∑

si si+1

(
�

si

AλA�
si+1
B λB

) ⊗ (
�

si∗
A λA�

si+1∗
B λB

)
. Then we have

eAB = Tr(EN/2−1E′)/Tr(EN/2), with E′ a matrix made of the tensors �A, λA, �B and

λB : E′ = ∑
si si+1s

′
i s

′
i+1

h
[i,i+1]
si si+1s

′
i s

′
i+1

(
�

si

AλA�
si+1
B λB

) ⊗ (
�

s ′
i∗

A λA�
s ′
i+1∗

B λB

)
. The key point is how

to tackle the multiplication between twoχ2 × χ2 matrices to compute eAB , since the cost
of directly multiplying two χ2 × χ2 matrices is O(χ6). Even if one takes advantage of
the tensor product structure of the matrix E, the cost of the matrix multiplication is still

1 However, we emphasize that the singular value matrices λA and λB cannot be interpreted as the square root of the
eigenvalues of the reduced density matrix for a subsystem on a half chain, in contrast with the infinite-size case.
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Figure 3. The expectation values eAB and eBA are needed to get the ground-state energy
per site for a translationally invariant periodic lattice system in one spatial dimension, with
eAB = 〈ψg |Oo|ψg〉/〈ψg |ψg〉 corresponding to an odd site i, and eBA = 〈ψg |Oe|ψg〉/〈ψg |ψg〉
to an even site i. For our specific Hamiltonian H, Oo ≡ Oe ≡ h[i,i+1]. Therefore, the χ2 × χ2

transfer matrix E takes two different forms: EAB and EBA. Similarly, for the matrix E′, we
have two different types: E′

AB and E′
BA. This implies that the ground-state energy per site is

eN = (eAB + eBA)/2.

O(χ5). However, note that, for a large-size quantum lattice system, an approximation can
be done to efficiently compute eAB, with the computational cost scaling as χ3. Meanwhile,
this does not affect the accuracy. First, perform a decomposition of the transfer matrix E:

E = TST−1 =
χ2∑

i=1

uisivi . (5)

Here, si is the ith largest eigenvalue of the transfer matrix E, with ui and vi being the
corresponding left and right eigenvectors, respectively. When multiplying the E for m
times, we get the matrix Em. Then, for a large m, an approximation of the matrix Em can
be obtained by replacing the matrix E with the k largest eigenvalues and the corresponding
eigenvectors. That is,

Em =
χ2∑

i=1

uis
m
i vi �

k∑

i=1

uis
m
i vi . (6)

In other words, for a large size system, only a few largest eigenvalues and the
corresponding eigenvectors of the transfer matrix E are needed to approximate EN/2−1 and
EN/2. Moreover, the larger the system’s size is, the smaller number k of the eigenvalues
of the transfer matrix E one needs to retain within the same accuracy. With such an
approximation in mind, and taking account of the tensor product structure of the matrix
E′, we see that the computational cost of the matrix multiplication between EN/2−1 and the
matrix E′ scales as O(kχ3). In addition, computing an eigenvalue and the corresponding
(left and right) eigenvectors of the χ2 × χ2 transfer matrix E costs O(χ3).2 Therefore,
the computational cost of eAB scales as kχ3.

2 Actually, the left and right eigenvectors of the transfer matrix corresponding to the largest eigenvalues constitute
the environment tensors.
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Two remarks are in order. First, the update procedure described above is not optimal, in
the sense that it does not produce the best approximate MPS representation for each imaginary
time step during the imaginary time evolution. A consequence of this is that our update
procedure is only useful to generate the system’s ground-state wavefunctions, but not for
real time evolution from a prescribed initial state, in contrast to the iMPS algorithm [6].
However, a less efficient update procedure is also available to remedy this drawback for
translationally invariant finite-size periodic lattice systems, which is optimal in the above
sense. The procedure is as follows. Form two MPS tensors As ≡ �s

AλA and Bs ≡ �s
BλB ,3

and construct a transfer matrix EAB ≡ ∑
si si+1

(Asi Bsi+1) ⊗ (Asi Bsi+1). In order to absorb a
two-site gate, one needs to compute environment tensors, i.e., the left and right eigenvectors
(corresponding to a few largest eigenvalues) of the transfer matrix EAB for each two-site non-
unitary gate. As such, the update problem is reduced to a two-site sweep procedure consisting
of successively solving a set of linear equations [4]. However, this requires updating the
environment tensors as we update the tensors A and B in the MPS representation for each
two-site non-unitary gate.

Second, although the computational cost of both updating the MPS tensors �s
Aαβ and �s

Bαβ

under the action of a two-site gate U [i,i+1] and the computation of the ground-state energy
per site scales as χ3, it is more time consuming to get the ground-state energy per site than
updating. Therefore, in order to speed up the convergence, it is a good strategy to perform a
certain number of updates, followed by the computation of the ground-state energy per site
once. This is due to the fact that the number of eigenvectors of the transfer matrix needed to
be retained increases with the evolution steps.

Example. We consider the quantum spin-1/2 Ising model in a transverse field on a finite-size
lattice in one spatial dimension with PBCs. It is described by the Hamiltonian:

H = −
N∑

i=1

(
σx

i σ x
i+1 + λσ z

i

)
, (7)

where σ i
α (α = x, z) are the Pauli spin-1/2 operators at lattice site i, and λ is the transverse

magnetic field along the z direction. The model is critical when λ = 1 in the infinite-size
(thermodynamic) limit, with the central charge c = 1/2.

Simulation results

First, we test the algorithm by computing the ground-state energy per site eN for the quantum
Ising model in a transverse field with the sizes from 10 to 100. Following the conformal
field theory prediction, the ground-state energy per site eN obeys the universal finite-size
corrections: eN = e∞ − πvc

6N2 , where c = 1/2 is the central charge and v = 2 is the Fermi
velocity for the critical quantum Ising model in a transverse field, and e∞ is the ground-state
energy per site in the thermodynamic limit. The least-square fit of the ground-state energy
per site eN , computed from the algorithm, with the system’s size N ranging from 10 to 100,
yields efit

∞ = −1.273 238 and c = 0.500 36, as plotted in figure 4.4 The relative fitting error
for the ground-state energy per site eN is less than 2.5 × 10−6 (see the inset in figure 4). Here,
we should mention that the third-order Suzuki–Trotter decomposition is used to find the best
MPS approximation to the ground states during the imaginary time evolution.

3 For such an update procedure, we only need to use the MPS tensors A and B, without the need to introduce the
tensors �A(B) and λA(B).
4 Note that the ground-state energy per site eN , evaluated from the algorithm for N = 4800, is 1.273 239 567 31.
This is in agreement with the conformal field theory prediction with an error less than 2.0 × 10−10.
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Δ
Figure 4. The scaling of the ground-state energy per site eN with the size N for the critical quantum
Ising model in a transverse field with PBCs (main). For sizes N from 10 to 100, the data are fitted to
eN = e∞ − πvc

6N2 , with v = 2 being the Fermi velocity. The relative fitting errors |efit
N − e

algo
N |/ealgo

N

are smaller than 2.5 × 10−6, where efit
N is extracted from the fit and e

algo
N is computed from the

algorithm for each N (inset).

Figure 5. The scaling relation between the von Neumann entropy SE and the block size
T (l) ≡ log2(N/π sin(πl/N)) for the critical quantum Ising model in a transverse field with
PBCs (main). For sizes N from 300 to 4800, the data are fitted to SE(l) = c

3 T (l) + a. The relative

fitting errors |Sfit
E (l) − S

algo
E (l)|/Salgo

E (l) are always smaller than 3.6 × 10−4, where Sfit
E (l) is the

value extracted from the fit and S
algo
E (l) is the value computed from the algorithm for each l (inset).

For larger sizes, we compute the entanglement entropy, i.e., the von Neumann entropy, for
the critical quantum Ising model in a transverse field with the system’s size ranging from 300
to 4800. For a system partitioned into two subsystems SA and SB , the von Neumann entropy is
defined as SE ≡ −TrAρA log2 ρA = −∑

i λi log2 λi , where ρA is the reduced density matrix
for the subsystem SA, and λi is the ith eigenvalue of ρA. For a critical system, the conformal
field theory predicts that the von Neumann entropy follows the universal logarithmic scaling
with the subsystem size l: SE(l) = c/3 log2(N/π sin(πl/N)) + a, where a is a model-
dependent constant [11–15]. In figure 5, we show the scaling relation between the von

7
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Neumann entropy and T (l) ≡ log2(N/π sin(πl/N)). The central charge cfit
N and afit

N are fitted
for different sizes. It yields that cfit

300 = 0.500 36, afit
300 = 0.689 56; cfit

600 = 0.500 32, afit
600 =

0.689 39; cfit
1,200 = 0.499 57, afit

1,200 = 0.691 59; cfit
2,400 = 0.498 96, afit

2,400 = 0.693 09;
cfit

4,800 = 0.500 14, afit
4,800 = 0.688 12. Note that the relative errors are less than 3.6 × 10−4 for

the von Neumann entropy.

Conclusion

For quantum systems on a finite-size lattice in one spatial dimension, we have developed
an efficient MPS algorithm to find a matrix product state representation of the ground-state
wavefunctions, with the computational cost independent of the lattice size. Moreover, the
scaling of the cost with the truncation dimension is comparable to the improved MPS algorithm
[8]. The independence of the computational cost on the system’s size enables us to simulate
the quantum spin-1/2 Ising model in a transverse field on a finite-size lattice in one spatial
dimension with PBCs, up to the size as large as 4800 for the truncation dimension 200.5

Moreover, the algorithm we developed requires the storage of only two tensors A and B. That
is, the total number of parameters to represent a quantum state in terms of an MPS is O(dχ2),
thus more states can be kept during the imaginary time evolution. In other words, larger χ

can be taken to achieve higher precision, compared to the improved MPS algorithm.
Finally, we point out that similar ideas are applicable to develop an efficient PEPS

algorithm to investigate quantum translationally invariant systems on a finite-size lattice in
two spatial dimensions, with the computational cost independent of the system’s size.
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